Modulation of the inspiratory-related activity of hypoglossal premotor neurons during ingestion and rejection in the decerebrate cat.
نویسندگان
چکیده
Single-unit activities of the bulbar reticular inspiratory neurons directly projecting to hypoglossal motoneurons were studied during fictive ingestion (e.g., swallowing) and rejection elicited by repetitive stimulation of the superior laryngeal nerve and by application of water to the pharynx in immobilized decerebrated cats. The single-unit activity was recorded during 113 episodes of fictive ingestion from 25 inspiratory neurons directly projecting to hypoglossal motoneurons (single projection neurons) and 7 inspiratory neurons directly projecting to both hypoglossal and phrenic motoneurons (dual projection neurons) in the regions ventrolateral to the nucleus tractus solitarii and dorsomedial to the nucleus ambiguus. All of single projection neurons ceased inspiratory-related rhythmical discharges coincidentally with the onset of repetitive stimulation of the superior laryngeal nerve. The majority of them (19/25, 76%, type A) showed a spike burst during ingestion, whereas the minority (6/25, 24%, type B) kept silent until the end of repetitive stimulation of the superior laryngeal nerve. During fictive ingestion elicited by application of water to the pharynx, the type-A neurons showed a spike burst activity, whereas the type-B neurons kept silent. All dual projection neurons (7/7, 100%, type C) ceased inspiratory-related rhythmical discharges at the onset of repetitive stimulation of the superior laryngeal nerve and showed no activity during fictive ingestion. Likewise, the type-C neurons kept silent during fictive ingestion elicited by application of water to the pharynx. A spike burst was induced during 33 episodes of fictive rejection in all of 5 tested type-A, 3 tested type-B, and 6 tested type-C neurons. It is concluded that the premotor neurons involved in the respiratory-related rhythmical activity of hypoglossal motoneurons is responsible for switching from respiration to ingestion and rejection.
منابع مشابه
Role of inhibitory neurotransmission in the control of canine hypoglossal motoneuron activity in vivo.
Hypoglossal motoneurons (HMNs) innervate all tongue muscles and are vital for maintenance of upper airway patency during inspiration. The relative contributions of the various synaptic inputs to the spontaneous discharge of HMNs in vivo are incompletely understood, especially at the cellular level. The purpose of this study was to determine the role of endogenously activated GABA(A) and glycine...
متن کاملSevoflurane depresses glutamatergic neurotransmission to brainstem inspiratory premotor neurons but not postsynaptic receptor function in a decerebrate dog model.
BACKGROUND Inspiratory bulbospinal neurons in the caudal ventral medulla are premotor neurons that drive motoneurons, which innervate pump muscles such as the diaphragm and external intercostals. Excitatory drive to these neurons is mediated by N-methyl-d-aspartate (NMDA) receptors and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors and is modulated by an inhibitory gamma-...
متن کاملSerotonergic modulation of inspiratory hypoglossal motoneurons in decerebrate dogs.
Inspiratory hypoglossal motoneurons (IHMNs) maintain upper airway patency. However, this may be compromised during sleep and by sedatives, potent analgesics, and volatile anesthetics by either depression of excitatory or enhancement of inhibitory inputs. In vitro data suggest that serotonin (5-HT), through the 5-HT2A receptor subtype, plays a key role in controlling the excitability of IHMNs. W...
متن کاملDischarge patterns of hypoglossal motoneurons during fictive breathing, coughing, and swallowing.
We performed a series of experiments to study the intracellular activity of 58 hypoglossal motoneurons (HMs) in decerebrate, paralyzed, and ventilated cats. Changes in membrane potentials (MP) and discharge activities were evaluated during fictive breathing (FB), swallowing (FS), and coughing (FC). FS and FC were elicited by electrical stimulation of the superior laryngeal nerves. FB, FS, and F...
متن کاملHalothane depresses glutamatergic neurotransmission to brain stem inspiratory premotor neurons in a decerebrate dog model.
BACKGROUND Inspiratory bulbospinal neurons in the caudal ventral medulla are premotor neurons that drive phrenic motoneurons and ultimately the diaphragm. Excitatory drive to these neurons is mediated by N-methyl-d-aspartate (NMDA) receptors and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors and modulated by an inhibitory gamma-aminobutyric acid(A) (GABA(A))ergic input. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 80 1 شماره
صفحات -
تاریخ انتشار 1998